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2 Instituto de Investigaciones en Materiales, UNAM, Apdo. Postal 70-360, 04510 México DF, Mexico
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Abstract. Normal behavior of the thermodynamic properties of a Fermi gas in d > 2 dimensions, integer
or not, means monotonically increasing or decreasing of its specific heat, chemical potential or isothermal
sound velocity, all as functions of temperature. However, for 0 < d < 2 dimensions these properties develop
a “hump” (or “trough”) which increases (or deepens) as d → 0. Though not the phase transition signaled
by the sharp features (“cusp” or “jump”) in those properties for the ideal Bose gas in d > 2 (known as
the Bose-Einstein condensation), it is nevertheless an intriguing structural anomaly which we exhibit in
detail.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
05.30.Fk Fermion systems and electron gas – 05.70.Ce Thermodynamic functions and equations of state
– 71.10.-w Theories and models of many-electron systems – 71.10.Ca Electron gas, Fermi gas

1 Introduction

The familiar ideal Fermi gas is revisited for any posi-
tive space dimension, d > 0. Ideal Fermi gases (IFG)
have been discussed thoroughly in general by several au-
thors [1–4] and a detailed study of the quantum behav-
ior in any dimension at sufficiently low temperatures in
these systems have also gained interest as possible pre-
cursors of a paired-fermion condensate at lower tempera-
tures, these have been studied experimentally in ultra-cold
fermionic clouds, e.g., with 40

19K neutral atoms in opto-
magnetic traps [5–8]. From the thermodynamic grand po-
tential we generalize the system to any dimension, we cal-
culated the thermodynamics properties and analyzed the
results for the chemical potential, the heat capacity and
the isothermal velocity of sound where we found that there
are structure if d < 2 in contrast with the ideal Boson gas
where there is structure if d > 2 [9,10]. In Section 2, we
calculate the thermodynamic grand potential for the non-
interacting Fermi gas in d-dimensions, we find the thermo-
dynamic properties of these systems and deduce a gener-
alized density of states (DOS). In Section 3, we calculate
the chemical potential µ(T ), the internal energy and the
specific heat as function of absolute temperature T for
any positive space dimension d and analyzed the results
obtained for d < 2. In Section 4 we obtain the isother-
mal and adiabatic velocities of sound for these systems.
Section 5 contains our conclusions.

a e-mail: masolis@hbar.wustl.edu

2 Ideal Fermi gas in d > 0 dimensions

We consider an ideal quantum gas of fermions in d > 0
dimensions of mass m in vacuum with a quadratic disper-
sion relation. The Hamiltonian is then H =

∑d
i=1 p2

i /2m,
its eigenvalues are given by

εn =
2π2

�
2

mL2

d∑
i=1

n2
i , (1)

where L is the size of the “box”, n = (n1,n2, ...,nd), and
where ni = 0, ±1, ±2, ... Since ki ≡ (2π/L)ni, (1) can
then be rewritten as

εki =
�

2

2m

d∑
i=1

k2
i . (2)

The thermodynamical properties of this system fol-
low from the thermodynamic (or grand potential)
Ω(T, Ld, µ) = U − TS + µN , where U is the internal en-
ergy, T the absolute temperature, S the entropy, µ the
chemical potential, and N the number of particles. We
may write Ω(T, Ld, µ) in generalized form as (see p. 134
of [1])

Ω(T, Ld, µ) = −kBT
∑
ki

ln
[
1 + e−β(εki

−µ)
]
, (3)
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with β ≡ 1/kBT , and kB is the Boltzmann constant. Using
the logarithm expansion ln(1 + x) = −∑∞

l=1(−x)l/l valid
for x < 1, (3) becomes

Ω(T, Ld, µ) = kBT
∑
ki

∞∑
l=1

(−e−β(εn−µ))l

l

= kBT

∞∑
l=1

(−eβµ)l

l

∑
ki

e−βl[(�2/2m)
∑ d

i=1 k2
i ]· (4)

In the continuous limit where �
2/mL2 � kBT , the sum-

mation over ki can be approximated by integral, namely∑
ki

−→ (2s+ 1)(L/2π)d
∫

ddki. Thus

Ω(T, V, µ) = kBT (2s+ 1)(L/2π)d

×
∞∑

l=1

(−eβµ)l

l

∫ ∞

−∞
dk1 e−βl(�2/2m)k2

1

×
∫ ∞

−∞
dk2 e−βl(�2/2m)k2

2 · · ·

×
∫ ∞

−∞
dkd e−βl(�2/2m)k2

d , (5)

with s the particle spin. Integrating, equation (5) becomes

Ω = (2s + 1)β−(d/2+1)

(
mL2

2π�2

)d/2 ∞∑
l=1

(−eβµ)l

ld/2+1
· (6)

The infinite sum can be expressed in terms of the Fermi
functions fσ(z) (see Appendix D of Ref. [1]),

fσ(z) ≡ −
∞∑

l=1

(−z)l

lσ
=

1
Γ (σ)

∫ ∞

0

dx
xσ−1

z−1ex + 1
, (7)

so that

Ω = − (2s+ 1)
(

mL2

2π�2

)d/2 fd/2+1(z)
βd/2+1

≡ −Ad

fd/2+1(z)
βd/2+1

,

(8)
which defines Ad, and where z ≡ eβµ(T ).

From (8) it is possible to find the thermodynamic
properties of a monatomic gas using the relation dΩ =
−SdT − PdV − Ndµ, where V ≡ Ld is the system vol-
ume and P its pressure. In this representation, the grand
potential Ω(T, V, µ) is the fundamental relation leading to
all the thermodynamic variables of the system, namely,

S = −
(

∂Ω

∂T

)
V,µ

,

P = −
(

∂Ω

∂V

)
T,µ

= −Ω

V

and N = −
(

∂Ω

∂µ

)
T,V

· (9)

3 Thermodynamic variables

3.1 Chemical potential

We determine the chemical potential µ(T ) as a function of
absolute temperature T for any positive space dimension
d > 0 from the number equation which is given from (8)
and (9),

N =
Ad

βd/2+1

(
∂

∂µ
fd/2+1(z)

)
T,V

= Ad

fd/2(z)
βd/2

, (10)

which after substituting Ad in (10) and using (7) becomes

N =
(2s+ 1)
Γ (d/2)

(
mL2

2π�2

)d/2 ∫ ∞

0

dε
εd/2−1

eβ(ε−µ) + 1
· (11)

Since N =
∫ ∞
0

dεg(ε)n(ε) where gg(ε) is the density of

states (DOS) and n(ε) ≡ [
eβ(ε−µ) + 1

]−1
is the Fermi-

Dirac distribution, then

g(ε) = (2s+ 1)
(

mL2

2π�2

)d/2
εd/2−1

Γ (d/2)
· (12)

Since
[
eβ{ε−µ(T )} + 1

]−1 −−→
T→0

θ (EF − ε), with θ(x) the
unit step function, µ (0) ≡ EF ≡ �

2k2
F /2m the Fermi

energy, kF being the Fermi wavenumber, we see from (11)
that

n ≡ N

Ld
−−→
T→0

2 (2s + 1)
dΓ (d/2)

( m

2π�2

)d/2

E
d/2
F , (13)

and we recover the expressions obtained in [3,11] for the
fermion number density with s = 1/2, i.e.,

n ≡ N

Ld
=

kd
F

2d−2πd/2dΓ (d/2)
, (14)

which gives the familiar results 2kF /π, k2
F /2π and k3

F /3π2

for d = 1, 2 and 3, respectively. Defining EF ≡ kBTF , the
chemical potential µ(T ) is obtained from (11) and (13) by
solving numerically the following equation

T d/2Γ (d/2)fd/2(eβµ) = (2/d)T
d/2

F . (15)

For d = 2, f1(z) from (7) is the ordinary log function so
that (15) gives

f1(z) = ln(1 + z) = TF /T, (16)

leading to the relatively well-known explicit [12] formula

µ(T )/EF = T/TF ln
(
eTF /T − 1

)
−−→
T→0

1 , (17)

which is clearly not expandable in powers of T/TF as
in the so-called Sommerfeld expansion [13]. However, for
d �= 2, µ(T ) is not an explicit, closed expression in T/TF ;
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Fig. 1. Chemical potential (in units of EF ) for an IFG in
d = 1/2, 3/4, 1, 2 and 3 dimensions as functions of tempera-
ture T (in units of TF ). On the left bottom panel we show the
maximum values in the chemical potential as function of d, and
on the right the values of the temperature Tmax corresponding
to the maxima in top panel.

numerical analysis is required to extract it. We now de-
termine the chemical potential µ(T ) as a function of ab-
solute temperature T for any positive space dimension,
d > 0. This requires solving (15) numerically when d �= 2.
Whereas µ(T ) in both d = 2, 3 is well-known to decrease
in T from the constant Fermi energy EF (which depends
only on the number density of fermions and on their mass)
at T = 0, towards the well-known classical value diverg-
ing logarithmically to −∞, for all d < 2 we find novel,
anomalous behavior consisting in a curious temperature
non-monotonicity: µ(T ) first increases quadratically as T
is increased, then changes curvature, acquires a maximum,
and finally decreases monotonically to the classical value.
This translates into a “shoulder” or “hump” in the heat
capacity as function of temperature, and may be relevant
in the study of quantum “dots,” “wires” and “wells” of
modern-day opto-electronics [14,15].

Results are exhibited in Figure 1 for several values of d.
The unexpected rise in µ(T/TF ) for d < 2 with increasing
T/TF is novel and anomalous, though it was reported in
reference [3] and more completely in reference [4] albeit
with some errors. For d = 1 it is graphed in reference [16]
(p. 192) for low temperatures, but without comment.
Using the large-z expansion (Ref. [1], p. 510) fσ(z) �
(ln z)σ/Γ (σ +1)+

(
π2/6

)
(σ−1) (ln z)σ−2

/Γ (σ)+ · · · the
d-dimensional Sommerfeld expansion for d �= 2 becomes

µ(T )/EF −−→
T/TF →0

1 − (d/2 − 1)(π2/6) (T/TF )2 + O(T 4). (18)

Note that the first correction to unity is positive for all
d ≤ 2, and since for large enough T the chemical potential
must diverge negatively to approach the classical value a
“hump” will emerge. Using the small-z expansion fσ(z) �
z − z2/2σ + · · · , one gets

µ(T )/EF −−→
T/TF →∞

− (T/TF ) ln
[
Γ (d/s) (T/TF )d/2 (d/2)

]
, (19)

or the well-known classical limit for large T .
From (8) and (9) we obtain this expression for the

entropy S in dimensionless form

S/NkB = (d/2 + 1)
fd/2+1(z)
fd/2(z)

− d/2
fd/2(z)

fd/2−1(z)
−−→
T→0

d
π2

6

(
kBT

EF

)
−−→
T→0

0, (20)

where the T → 0 limit is obtained by using the large-z
expansion for fd/2(z), and clearly complies with the third
law of thermodynamics.

3.2 Internal energy

The internal energy can be obtained from (see p. 159 of
Ref. [1])

U(T, V ) = −kBT 2 ∂

∂T

(
Ω

kBT

)
V,z

· (21)

Substituting (8) in (21) and comparing with (8) we find
that (recalling that V ≡ Ld)

U (T, V ) =
d

2
Ad

βd/2+1
fd/2+1(z) =

d

2
Ω =

d

2
PV. (22)

Equation (22) is a generalization of the relation PV =
2U/3 for an ideal gas of fermions (and in fact, also bosons),
in the nonrelativistic limit. Comparing (10) with the last
equation we find

U (T, V ) =
d

2
N

β

fd/2+1(z)
fd/2(z)

· (23)

For T → 0, using the large-z expansion for fd/2(z) one has

2U(T, V )/dNEF −−→
T→0

(
2

d + 2

)
+

π2

6

(
T

TF

)2

+ · · · (24)

In the classical limit T → ∞, z � 1, we again use fσ(z) �
z − z2/2σ + · · · and from (23) get

U/N −−→
T→∞

d

2
kBT, (25)

in accordance with the equipartition theorem in
d dimensions.
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3.3 Specific heat

The specific heat at constant volume CV ≡
[∂U(T, V )/∂T ]N,V follows from (23)

CV (V, T ) =
d

2
Ad

[
(d/2 + 1)kB

fd/2+1(z)
βd/2

+
1
z

(
∂z

∂T

)
N,V

fd/2(z)
βd/2+1

]
· (26)

Substituting (10) in the last equation, this becomes

2CV (V, T )
dNkB

= (d/2 + 1)
fd/2+1(z)
fd/2(z)

− (d/2)
fd/2(z)

fd/2−1(z)
,

(27)
where we used the relation

1
z

(
∂z

∂T

)
N,V

= −kBβ(d/2)
fd/2(z)

fd/2−1(z)
, (28)

which is extracted from the (vanishing) derivative with
respect to T of the number equation (10).

Equations (24) and (25) for large-and small-z may be
differentiated to yield the specific heat as

CV /NkB −−→
T→0

(d/2)
π2

3

(
T

TF

)
(29)

and

2CV /dNkB −−→
T→∞

1 +
z

2d/2+1
(1 − d/2) . (30)

Figure 2 (top panel) illustrates the “hump” developed by
the CV (T ) for all d < 2. These peculiar results for the
ideal Fermi gas in d < 2 dimensions, manifesting “struc-
ture” in the form of anomalous (non-monotonic) behavior
in the chemical potential and in the specific heat, contrasts
sharply with the ideal Bose gas where the “structure” ap-
pears for all d > 2, (see Fig. 2.5 of Ref. [9] for integer d,
and Fig. 2 of Ref. [10] for all d > 2). The (sharp) structure
observed is the Bose-Einstein condensation (BEC) whose
signature is a “cusp” in the specific heat at the critical
transition temperature for all 2 < d ≤ 4, and a “jump” in
its value there for all 4 < d < ∞.

4 Sound velocities

To further exhibit the anomalous behavior for d < 2
we have also calculated mechanical properties, e.g., the
isothermal cT and adiabatic cS velocity of sound in the
IFG. These are defined as

mc2
T =

(
∂P

∂n

)
T

, mc2
S =

(
∂P

∂n

)
S

, (31)

where from (8) the pressure P ≡ −Ω/V is given by

P =
(
Ad/Ld

) fd/2+1(z)
βd/2+1

· (32)
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Fig. 2. Specific heat for an IFG in d = 1/4, 1/2, 1, 2 and
3 dimensions. On the left bottom panel we show the maximum
values of the specific heat as function of d and on the right the
values of the temperature Tmax corresponding to the maxima
in top panel.

4.1 Isothermal sound velocity

From (31) and (32) one has

mc2
T (T ) =

(
Ad/Ld

)
βd/2+1

(
∂fd/2+1(z)

∂n

)
T

· (33)

Using the relation
(

∂fd/2+1(z)
∂n

)
T

= βfd/2(z)
(

∂µ

∂n

)
T

=
1
n

fd/2(z)
fd/2−1(z)

,

(34)
which is obtained from (10), we find

mc2
T (T ) = kBT

fd/2(z)
fd/2−1(z)

· (35)

Normalizing with EF ≡ mv2
F /2 = kBTF (35) we have

[cT (T )/vF ]2 =
1
2
(T/TF )

fd/2(z)
fd/2−1(z)

· (36)

Using the large-z expansion for fd/2(z) as T → 0 we find

[cT (T )/vF ]2 −−→
T/TF →0

µ/ (dEF ) +
π2

12

(
d

2
− 1

)
(T/TF )2

µ/EF

(37)
or, since at T/TF = 0, µ = EF one gets the familiar result

cT (0) = vF /
√

d. (38)
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Fig. 3. The quantity c2
T (T )/c2

T (0) where cT (T ) is the isother-
mal sound velocity for an IFG as function of tempera-
ture T/TF . On the left bottom panel we show the minimum
values in the isothermal sound velocity compared with cT (0)
as function of Log d, and on the values of the temperature Tmin

corresponding to the minimum in top panel.

In the limit of small z, fσ(z) → z as T → ∞ we have

[cT (T )/vF ]2 −−→
T/TF →∞

T/2TF , (39)

which corresponds to the classical limit. From (37) and
(39), we conclude that cT (T )/vF decrease in T for all d < 2
from 1 at T = 0, then changes curvature, acquires a min-
imum, and finally increases linearly as T to the classical
value. In Figure 3 we plot c2

T (T )/c2
T (0) where cT (T ) is the

isothermal sound velocity for an IFG as function of tem-
perature T/TF for d = 1/4, 1/2, 1, 2 and 3. Note that
cT develops a “trough” for d < 2 which deepens as d de-
creases, more clearly seen in the bottom left panel where
we show the minimum values in the isothermal sound ve-
locity compared with cT (0) as function of Log d, and on
the values of the temperature Tmin corresponding to the
minimum in top panel. Thus c2

T (T ) never becomes nega-
tive so that cT (T ) is always real.

4.2 Adiabatic sound velocity

The adiabatic sound velocity cS in a Fermi gas is obtained
from the adiabatic state equation for an ideal gas in d-
dimensions, namely (Ref. [1], p. 229)

PV γ = const ≡ Nγc, (40)

where γ ≡ 1 + 2/d, N is the particle number and c some
constant. Hence

P = nγc. (41)

Using (41) in the second equation of (31) we find

mc2
S =

(
dP

dn

)
N,S

=
γP

n
· (42)

Substituting γ and (41) in (42) we have

mc2
S =

(
2
d

+ 1
)

P

n
=

(
2
d

+ 1
)

kBT
fd/2+1(z)
fd/2(z)

, (43)

from which is obviously monotonic for all d.

5 Conclusions

After constructing the grand potential, thermodynamic
properties were determined along with densities-of-states
for an ideal Fermi gas in d dimensions, integer or not.
For 0 < d < 2 dimensions these properties develop a
hump in the chemical potential µ(T ) and in the specific
heats CV (T ) and a trough in the isothermal velocities of
sound cT (T ). This structure contrasts with the case of
the ideal Bose gas structure ocurring, however, for d > 2
commonly associated with BEC, and characterized by a
cusp in the specific heat when 2 < d < 4 and a jump for
all 4 < d < ∞.
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